
1

1

WU-FTPD and Apache
Security Basics

Hal Pomeranz
Deer Run Associates

All material in this course Copyright © Hal Pomeranz and Deer Run Associates,
2000-2002. All rights reserved.

Hal Pomeranz * Founder/CEO * hal@deer-run.com
Deer Run Associates * PO Box 20370 * Oakland, CA 94620-0370
+1 510-339-7740 (voice) * +1 510-339-3941 (fax)
http://www.deer-run.com/

2

2

WU-FTPD

This section deals with security configuration for the Washington University FTP
daemon (WU-FTPD), a complex FTP server with many useful features.
Unfortunately, all of this complexity comes at a cost– configuring WU-FTPD can
be a bit tricky, and the daemon has had a long history of security problems.

3

3

The Server They Love to Hack

• WashU FTP daemon (WU-FTPD) is still
the de facto standard on the Internet

• This makes it a target for attackers:
– Buffer overflows
– First reported format string attack
– Trojan WU-FTPD source code

• Keep up-to-date on releases!

• Configuration mistakes also a major issue

The Washington University FTP daemon (WU-FTPD) is so named because it was originally
developed at Washington University in St. Louis. About a decade ago, the Washington University
FTP server (wuarchive.wustl.edu) was one of the largest and most heavily used anonymous
FTP servers in the country (if not the world) and WU-FTPD was developed to meet the special needs
of this service. It was widely adopted by other large anonymous FTP sites and has essentially
become the de facto standard anonymous FTP server for large archive sites (though this is changing
lately). Development of WU-FTPD has since moved on from Washington University and the latest
software and updates can now be found at http://www.wu-ftpd.org.
Since WU-FTPD is so prevalent and since WU-FTPD servers distribute much of the free software on
the Internet today, attackers are highly motivated to poke holes in WU-FTPD. After all, if an
attacker can compromise a major FTP server, they can put Trojan horses in the software that is
regularly downloaded from that server and infect a vast number of machines. The fact that WU-
FTPD is a large, complicated piece of software means that it's very likely that there are still security
holes in the code that we haven't discovered yet.
Many of the security issues in WU-FTPD over the years have been buffer overflows of one sort or
another. The first published "format string" type attack was found in WU-FTPD (see CERT advisory
CA-2000-13). There was even an incident (back when the source was still maintained at
wuarchive) where attackers managed to plant a Trojan horse in the WU-FTPD sources at the
primary archive site, polluting several versions of the software at a large number of archive sites (see
CERT Advisory CA-1994-07). It's critical to keep up-to-date on WU-FTPD releases. As of this
writing, the current version is 2.6.2, released on Nov 30, 2001.
Aside from bugs in the software itself, many times FTP sites are compromised because the FTP
server is simply not properly configured. The problem of secure configuration of WU-FTPD servers
is the topic of the rest of this section.

4

4

Why Keep Using WU-FTPD?

• Useful WU-FTPD features that make
added complexity worthwhile:
– Strict controls for anonymous uploads
– Restricted "guest" user access

• Neither feature is needed if you only
need to allow anonymous downloads

• For "download only" FTP servers, think
about using an alternative FTP daemon

If WU-FTPD has had such a significant history of security problems, and if we
anticipate more simply due to the sheer complexity of the software, wouldn't it just
be better to use a different FTP server? WU-FTPD does have two features that are
not widely available in other FTP daemons:
1) WU-FTPD gives administrators a number of different configuration commands
for tightly controlling files uploaded by anonymous FTP users. These configuration
options are very much required to allow safe anonymous uploads, and other FTP
daemons generally don't have them.
2) WU-FTPD allows the administrator to set up special "guest" access for certain
users. "Guest" access means that when the user FTPs into the system, they are
essentially chroot()ed into their home directories. Again, other FTP servers
generally don't have this feature.
On the other hand, if you never plan to allow anonymous uploads and aren't making
use of the "guest" user feature, then there is no advantage to running WU-FTPD.
Aside from the potential security problems, WU-FTPD has a bigger memory
footprint than many other FTP daemons, which can be a problem on heavily used
FTP servers. So, you're probably better off picking another FTP server if you are
not planning to make use of WU-FTPD's most useful features.

5

5

Alternatives

vsftpd (vsftpd.beasts.org)
– Small, fast, secure FTPD

ProFTPD (www.proftpd.net)
– Very Apache-like configuration file

NcFTPD (www.ncftpd.com)
– Commercial software
– Restrict non-anonymous users to homedirs

WU-FTPD's "competitors" are listed here.
• vsftpd ("very small FTP daemon") is becoming more and more popular these
days. It's a very "bare bones" FTP server, but it's fast and reliable and designed with
security in mind. vsftpd's small memory footprint makes it popular with high-
volume servers.
• ProFTPD is also popular, primarily because the configuration file for ProFTPD
looks a lot like an Apache config file. So, if you need a small FTP area to go with
your Apache Web server, using ProFTPD seems natural.
• NcFTPD is actually a commercial software product that also claims to be a small,
fast, reliable, secure FTP daemon. NcFTPD is notable because it's the only other
FTP server that seems to have something close to WU-FTPD's "guest" user
functionality.
Note that many sites are using the BSD-style FTP daemon that was audited by the
OpenBSD team (http://www.openbsd.org). A Linux port is available from
http://www.owlriver.com/projects/ftpd-BSD/, but the Web page
notes that they've stopped supporting this software and are urging people to switch
to vsftpd.

6

6

The Rest of this Section

� Setting up anonymous FTP

� Allowing safe anonymous uploads

� Configuring "guest" user access

The rest of this section is divided into three parts:
• The first section deals with basic anonymous FTP security configuration for a
machine that is allowing downloads only. It's important to get the basic anonymous
FTP configuration correct before you even consider allowing uploads to the server.
• The next section then introduces the extra configuration steps necessary to allow
the server to accept anonymous uploads securely.
• The last section covers how to make use of the WU-FTPD "guest" user feature.
WU-FTPD server can allow anonymous access, guest access, or both at the same
time, so many of the configuration commands in the previous sections will apply
here as well.

7

7

If You're Not Doing Anon FTP

• Disable the FTP daemon entirely and
use ssh/scp/sftp instead

• Remove ftp user from passwd and
shadow files

• Remove ftp user's home directory

Note that if the system is not being used for anonymous or "guest" FTP access, then
it probably shouldn't be running FTP. SSH is a more secure file transfer mechanism
(albeit slower due to the encryption overhead).
Disable the FTP daemon by removing or commenting out the appropriate line in
inetd.conf (or setting "disable = yes" in the xinetd config file for the
FTP server, usually /etc/xinetd.d/*ftp*). If the password file contains an
"ftp" user, remove it since this user is only needed for anonymous FTP servers.
The home directory of the ftp user is the location of the anonymous FTP directory
on the system. If this directory exists, you can remove it as well.
Note that RedHat systems have an RPM called anonftp that may be installed on
your system– removing this RPM automatically removes the anonymous FTP
directory (/var/ftp usually).

8

8

Anonymous FTP

Secure anonymous FTP configuration is a combination of good directory setup and
good server configuration. We'll tackle both of these issues in this section.

9

9

Creating the Anon FTP Dir

• Most OS vendors ship a pre-configured
FTP dir or provide a script to make one

• Vendor config not always perfect:
– root:root ownership on all files and dirs
– All dirs except "pub" should be mode 111
– All files mode 444, shared libs mode 555
– Strip unneeded info from passwd/group files
– "bin" dir should only contain ls program

These days, most vendors provide either a pre-configured FTP directory (ala RedHat's anonftp
RPM) or at least provide a script for creating this directory. This is extremely useful, because it's
always something of a hassle figuring out the vendor-specific device files and configuration files that
are required in the anon FTP hierarchy. Usually you can find the vendor's script by looking at the
ftpd manual page on the system.
Unfortunately, this vendor-provided material doesn't always give you an FTP directory that is as
secure as it could be. It's worthwhile to check all of the permissions, etc. for files in the FTP
directory before allowing anonymous access. Since the daemon will be running as user "ftp" after
the user logs in for the anonymous FTP session, all files and directories in the anon FTP area should
be owned by root to prevent the anonymous FTP user from tampering with them. Files should
generally be mode 444 (except shared libraries which must be mode 555) and directories mode 111
(except the "pub" directory where download files are placed– this needs to be mode 555).
There only needs to be one program in the "bin" directory, namely the ls program Some vendors
like RedHat will put other programs like tar, gzip, and compress in the FTP "bin" directory
for on-the-fly data conversions– probably not a good idea in general. If you cannot statically link the
ls program, then you will need to use the ldd program to determine what shared libraries the ls
binary needs, and copy these shared libs into the "lib" or "usr/lib" (depending on the OS)
directory in the anonymous FTP area.
Most administrators will put stub passwd and group files into the "etc" directory so that the ls
program can display human readable usernames and group names. It's a good idea to null out all
data fields in these files except the username/groupname and the UID/GID, and also to delete any
user accounts from the passwd file that won't be owning files in the FTP area. Just in case
somebody does manage to download the passwd file out of the FTP area, you want them to get as
little extra info as possible. Never put a shadow file in the anon FTP "etc" directory.

10

10

WU-FTP Config Files

• Usually located in /etc or /etc/ftpd:
ftpusers – users who are not allowed to FTP in
ftpgroups, ftphosts – other access controls
ftpconversions – "on-the-fly" tar/gzip
ftpaccess – the primary/critical config file

• For purposes of this discussion, we'll focus
primarily on ftpaccess file configuration

Once you're satisfied with the configuration of the anonymous FTP directory, it's time to turn
your attention to configuring WU-FTPD itself. The daemon will look for it's configuration
files in a particular directory chosen at compile time– usually /etc or /etc/ftpd.
Like almost all FTP daemons, WU-FTPD will look at the ftpusers file for a list of users
who are not allowed to FTP into the system. "root" and the other non-user accounts on the
system (like bin, daemon, nobody, etc.) should probably be listed here. Be careful not to
put the "ftp" user in this file or anonymous FTP will not work! ftpgroups and
ftphosts can control access by group membership or by IP address/network. However,
WU-FTPD allows the administrator similar access control in the central ftpaccess config
file, so there doesn't seem to be much point in using multiple separate files here.
ftpconversions allows the administrator to have the daemon automatically
tar/compress/gzip certain data when it is downloaded by a user. This can sometimes be
useful if your FTP directory contains a large source tree with lots of separate source files
(rather than a big *.tgz file containing all the sources)– if a user requests part of the tree, the
FTP server will just tar the directory structure up, gzip it, and fire it off to the user. Still, it
seems like the FTP server automatically triggering commands in this fashion might open up a
security hole. It's probably best to just tar and gzip your source files manually and make
the *.tgz files available from your FTP site. Then you can remove the ftpconversions
file entirely.
The real action happens in the ftpaccess file, and that's what we'll be looking at for the rest
of this section.

11

11

Basic Server Config Items

hostname ftp.sysiphus.com

email ftpadmin@sysiphus.com

loginfails 3

passwd-check rfc822 warn

defumask 022

timeout RFC931 0

hostname is the name the server should use when printing banner messages, etc. If
ftp.yourdomain.com is actually an alias pointing at a machine with a different "real" name,
you probably will want to set this parameter to hide the actual machine name (also useful when
ftp.yourdomain.com points at a cluster of machines behind a load-balancing system). email
is the email address of the server admin– this value is also used in various informational messages.
loginfails is the number of times that normal or "guest" users may attempt to log in before the
FTP connection is dropped by the server. passwd-check, on the other hand, applies to
anonymous FTP users only. passwd-check sets how strict you want to be when checking the
email address the anonymous user is supposed to enter as their password. "rfc822" here means
that WU-FTPD will validate that the string entered looks like a "standard" email address as defined
by this RFC (typically "user@some.dom"). "warn" means that the user gets a short warning
message if what they entered doesn't look correct, but will be allowed access anyway. You could set
this to "enforce" instead of "warn" to kick off people who don't enter legitimate looking email
addresses, but you'll find that many people are simply ignorant of their actual email address and
you'll probably end up blocking some Web browser based anonymous FTP sessions (which may not
supply something that looks like an email address).
defumask is the default umask value to use when users upload files or create directories on the
FTP server. Typically this is only used when you are allowing normal or "guest" FTP access. In the
case of anonymous uploads, we will be explicitly setting the permissions on uploaded files for
security reasons.
By default on each new connection WU-FTPD will attempt to connect back to the ident service
running on the remote system. Most sites block ident access or simply don't run the service, so
this is just a waste of time. Setting the timeout value for RFC931 type queries (RFC931 defines
the ident protocol) to zero stops WU-FTPD from even trying to do an ident connection.

12

12

Basic Access Control

• "Standard" ftpaccess file allows regular,
"guest", and anonymous access:
class all real,guest,anonymous *

• Allow anonymous access only:
class anon anonymous *

• Further restrict by IP address if desired:
class anon anonymous 192.168.0.0/16

The next step is to define what "classes" of FTP access are going to be allowed. The
"standard" ftpaccess file that ships with WU-FTPD allows "real" users (normal logins
by folks with accounts in the passwd file), "guest" access (normal access but user is
chroot()ed to their homedir), and "anonymous" (anonymous FTP sessions in
chroot()ed directory). If the machine is just going to be an anonymous FTP server and
you don't want normal users FTPing into the system, then simply change the "class" line
so that only "anonymous" access is allowed. Any class of access not explicitly listed in
the ftpaccess file will be blocked.
The last field of the "class" directive is actually a list of address "globs" that say which IP
addresses are allowed access for this particular class. Internet anonymous FTP servers will
generally use "*" here since they want to allow access from any IP address. However, for
an intranet FTP server, you may want to restrict access to only your local IP address ranges.
You can either specify <addr>:<mask> (192.168.0.0:255.255.0.0) or
<addr>/<CIDR> (192.168.0.0/16) and you can specify multiple different network
"globs" separated by spaces. Host names and domain name globs ("*.domain.com") are
allowed, but stick with IP addresses because DNS can be spoofed. You can also specify
exceptions with "!", e.g. "!10.1.1.0/24" would mean "allow access from everywhere
except network 10.1.1.0".
Of course, this functionality is a direct overlap with the functionality provided by TCP
Wrappers. Having this functionality in the FTP daemon, however, means less connection
latency and less resource utilization– this is a good thing on heavily used FTP servers.

13

13

Class Limits

• Can also restrict access by day/time:
limit anon 25 Any /etc/msgs/toomany

limit anon 50 SaSu|Any2000-0600 /etc/msgs/toomany

• Useful for saving system resources and
network bandwidth during regular hours

• See also file-limit, data-limit,
limit-time, and host-limit options

Access for certain classes can be restricted by time of day and/or day of week. In
the example on the slide, the "anon" class for anonymous access (which we
defined on the previous slide) is allowed 25 simultaneous sessions any time and on
any day of the week. Outside of "normal" hours– Saturdays, Sundays, and any day
between 8pm and 6am local time– up to 50 users are allowed. If these thresholds
are exceeded, the message in the file /etc/messages/toomany is displayed
and the connection is dropped. Note that the administrator has to create the
message file by hand, and the filename is relative to the directory the anonymous
FTP server will chroot() to– so if your anon FTP directory is /var/ftp, you
need to create /var/ftp/etc/msgs/toomany.
The limit control is sort of a gross restriction on the amount of simultaneous
anonymous FTP traffic on your server. WU-FTP also has file-limit and
data-limit options that can be used to control the number of files or bytes the
user can transfer in a single session. limit-time controls the maximum duration
of any single session.
host-limit limits the number of simultaneous connections from each unique IP
address. This one can be tricky because many large sites now filter all of their
Internet access through a network address translation device or a proxy server that
makes all connections appear to come from a single IP address. Be careful using
this option.

14

14

Basic Security Policy

overwrite no anonymous

delete no anonymous

rename no anonymous

chmod no anonymous

umask no anonymous

noretrieve /var/ftp

allow-retrieve /var/ftp/pub

After setting up the anonymous access class and any limits appropriate for anonymous access, the
next step is to tightly restrict what the anonymous user can do. The permissions/ownerships on the
anonymous FTP directory itself already tightly restrict what anonymous users can do, but reinforcing
those restrictions in the ftpaccess file is also a good idea. For one thing, restricting access via
multiple mechanisms means that if you make a mistake in one area (like directory or file
permissions), the access controls set elsewhere will still prevent malicious users from doing the
wrong thing. Also, having these settings in the ftpaccess file clearly documents to other
administrators what the "correct" level of access is for anonymous users.
The first set of configuration directives shown on the slide prevents anonymous users from triggering
various commands (note the settings shown here are the WU-FTPD defaults for anonymous users,
but it's probably best to set them explicitly– again for "self documentation" purposes alone if for no
other reason). Anonymous users are not allowed to overwrite, delete, or rename files in the
anonymous FTP area– access that should also be blocked by the fact that files and directories in this
area should only be writable by the root user. Anonymous users are also not allowed to chmod
files or to change their default umask as set by the FTP server (c.f., the defumask command we
saw earlier).
Anonymous users should only be allowed to download files from the "pub" directory where
downloadable data is kept. You don't want anonymous users to be able to download files in the
"bin", "lib", "etc" directories because this could give a potential attacker information about your
system (the "ls" binary indicates the OS type and possibly version and patch level, the "passwd"
file contains user info, etc.). Here we're using noretrieve to define a default policy that
downloads are not allowed in the entire anonymous FTP area, and then using allow-retrieve to
create a specific exception for the "pub" directory where the downloadable files reside. If you had
multiple download directories under /var/ftp, then multiple allow-retrieve statements
could be used.

15

15

Controlling File Names

• Prevent malicious users from exploiting
strange file names:
path-filter anonymous /etc/msgs/path
^[-A-Za-z0-9._[:space:]]*$
^\. ^- ^[:space:]

• First regexp is allowed file names,
trailing patterns specify exceptions

• Becomes particularly important when
we start allowing uploads

Note that the path-filter directive shown here must be written on a single long line in the
ftpaccess file!
It is also a good idea to restrict what file names anonymous users are allowed to access. This becomes
very important when we start allowing anonymous users to upload files, but it can even make a
difference on a "downloads only" type FTP server. For example, some sites put special configuration
information (typically used by system processes other than the FTP server) into "dot files" (files
whose names begin with a period) in various directories under "pub" (this is not recommended as
good practice, but it happens). It's likely that the system administrators wouldn't want anonymous
users to be able to download these files.
The syntax of the path-filter directive is rather funky. The first argument is the access class the
filter applies to (you could have one filter for anonymous users and a less restrictive one for real or
guest users), and the next argument is the path name to a file containing a message that gets displayed
to the user when the filtering rules are violated (again, this file must exist under the anonymous FTP
directory). The first regular expression on the line says what file names are allowed– here we're
saying that files names can contain only letters, numbers, dashes ("-"), periods, underscores ("_"), and
spaces (if your FTP server has a lot of Windows or Mac users, allowing spaces in file names is usually
expected). Any remaining regular expressions on the line are file names that are explicitly not
allowed– here we're not allowing files to begin with a period, dash, or space.
The "[:space:]" syntax is necessary because the primitive WU-FTPD config file parsing code
breaks up the arguments to the path-filter directive by whitespace (and doesn't understand
quoting or backwhacking special characters). If you put a literal space into any of the regular
expressions, then the config file parsing routine in WU-FPD would treat the regular expression as two
different regexps. Thanks to Lee Brotzman (leb@gmss.com) for bringing up this problem and
pointing out the solution.

16

16

Logging

• Can choose to log different sorts of info:
logfile /var/log/xferlog

#log commands anonymous

log transfers anonymous

log security anonymous

• Logging commands not that useful for
anon FTP– we disabled most cmds earlier

• xferlog can still get huge quickly–
rotate file on a regular basis

WU-FTPD allows for a fairly high level of control over what gets logged and where that
logging happens. Logging commands logs all standard FTP commands triggered by
members of the listed access class. Since we've already disabled most commands for the
anonymous access class, logging commands may not be that useful. On the other hand,
maybe you want to log these commands just in case somebody makes a mistake in the
configuration file that ends up allowing anonymous users to use them. In the example
above we're commenting out the "log commands anonymous" line so that these
entries will not be logged.
Logging transfers causes WU-FTPD to log all uploads and downloads (file name,
bytes transferred, duration, etc.)– these log entries also contain either the username (for
real and guest access) or the email address (for anonymous access) of the user transferring
the data. Logging security logs all violations of the security policy set up in the
ftpaccess file (e.g., trying to access file names blocked by path-filter or trying
to download files from a "noretrieve" directory).
By default, WU-FTPD logs all of this information to a file called /var/log/xferlog.
This pathname can be changed with the logfile directive. WU-FTPD is also capable
of logging this information via Syslog: "log syslog" says to log via Syslog only,
"log syslog+xferlog" says to log both to Syslog and to the xferlog. Logging to
Syslog is useful if you want to send your FTP server logs to some other central loghost for
processing.
On a busy anonymous FTP server, xferlog grows extremely quickly. Be sure you have
a cron job that rotates this log file on a regular basis.

17

17

Informational Messages

greeting text FTP server ready.

signoff text Adios!

stat terse

message /etc/msgs/welcome login

message .message cwd=*

readme README* login

readme README* cwd=*

WU-FTPD also gives the administrator a lot of control over what messages are displayed to the
remote user. greeting is the message that is displayed before the FTP login prompt– usually this
message displays both the hostname and the FTP server version. You can hide this information by
changing the greeting string as shown here. Note that you might want the message to be a warning
banner like "Authorized uses only. All access may be monitored and reported." (this is particularly
true on "intranet" FTP servers). signoff is what gets displayed after the user closes the FTP
connection– the WU-FTPD default is to display the hostname and the amount of data transferred
during the session, which may be more information than you want to give away. The STAT
command in the FTP protocol allows the remote user to get information about the FTP server and the
current session. "stat terse" causes WU-FTPD to report only the connection status (up or
down)– "stat full" (the default) would report the server hostname, daemon version, and
connection status, and "stat brief" only reports the hostname and connection status.
message and readme are used to display informational messages during the FTP session.
message specifies a file whose contents are displayed when a particular condition occurs– like a
welcome message at login that defines the rules for anonymous FTP access and how to get help
(for anonymous access, this file would have to exist under the anonymous FTP directory). The
second message directive says to display messages whenever the user changes directories– if the
file named .message doesn't exist, then nothing is displayed. Files displayed via message may
contain special escape sequences that will be automatically expanded by the FTP server– like %E
which expands to the email address of the server admin that we set earlier with the email directive.
For a complete list of escape sequences, check out the ftpaccess manual page.
The readme directive doesn't display the contents of the matching files. Instead, WU-FTPD prints
an informational message that tells the remote user the last time the matching file was updated
("Please read the file README– it was last updated on …"). The user is expected to do something
like "get README –" to actually view the contents of the file.

18

18

Running the FTP Server

• Need an ftp user in /etc/passwd:
ftp:x:99:99:Anon FTP:/var/ftp:/dev/null

• Also need inetd.conf entry:
ftp stream tcp nowait root

/usr/local/bin/ftpd ftpd –a –l

• Note that WU-FTPD is capable of running
as a stand-alone daemon if desired

Once the anonymous FTP area is set up and the ftpaccess file fully configured, there are still a
couple of steps necessary to actually allow anonymous access and start the FTP daemon itself.
Generally it's a good idea to get all of the directory and ftpaccess security configuration done
first before you actually enable anonymous access and start WU-FTPD.
To allow anonymous access, there must be a user called "ftp" in the system passwd and shadow
files. Use a unique UID and GID for the ftp user that are not shared with any other user or process
on the system. This user should have their password entry in the shadow file blocked (use "LOCK"
or "*" or some other invalid password string) and should have an invalid shell field in
/etc/passwd to prevent normal logins. Note that many FTP daemons require the invalid shell for
the ftp user to be listed in /etc/shells, but this is not necessary for WU-FTPD. The home
directory for the ftp user is where the FTP daemon with chroot() itself when a remote user logs
in as anonymous or ftp.
You will probably need to replace the inetd.conf entry for the vendor's FTP daemon with a new
entry that fires up WU-FTPD. The "-a" flag tells WU-FTPD to use the ftpaccess file (this is not
the default for some reason) and "-l" causes each new FTP session to be logged via Syslog (similar
to the logging done by TCP Wrappers). Note that we are not using TCP Wrappers for access control,
since this can be handled by the daemon itself via the ftpaccess configuration. On the other
hand, some sites prefer to do IP address based access controls via TCP Wrappers just so all of their
access control policy is centralized in the hosts.allow and hosts.deny files. Of course,
there's a performance hit for using TCP Wrappers.
For sites that are really concerned about performance, WU-FTPD can be run as a stand-alone
daemon rather than via inetd or xinetd. For more information, see the "-S" (standalone) option
in the ftpd manual page. There is also a "-r" flag that can force the daemon to chroot() itself
as soon as it starts executing.

19

19

Anonymous Uploads

Once you've got the basic anonymous FTP server set up and working for downloads
only, spend some time testing the configuration. Make sure that all of the various
security settings like "noretrieve" and "path-filter" are working and that
logging is happening like you expect. Once you're satisfied that the basic
anonymous configuration is working properly you can go ahead and start
configuring upload capability.

20

20

CAUTION: Anon Uploads

• Don't allow downloads of uploaded files
– You'll become a "warez" site

• No executable or set-UID uploads
– Program could be triggered by different exploit

• Restrict names of uploaded files
– File called "-r" is a problem when you "rm *"

• Don't allow uploaded files to be overwritten
– Potentially serious confusion will result

Anonymous uploads are a danger that really should be avoided if at all possible. Consider allowing
"guest" access instead (more on this in the next section) because guest users at least have to enter a
valid password and are each given their own private directory for accessing files.
If you do need to allow anonymous uploads, there are a few important rules to remember:
• Never allow uploaded files to be downloaded by anonymous users. If you permit downloads in the
upload directory, then your upload area becomes a "warez" (pronounced "wares") site where
anybody can distribute pirated software, pornography, or attack tools. Also you wouldn't want to
allow data from one customer to downloaded by other users.
• Always strip the execute and set-UID/set-GID bits on uploaded files. Suppose your Web server
and FTP server were the same machine (a bad idea in general). A buffer overflow in the Web server
only gives the attacker access with the privileges of the Web server user. But if the attacker were
able to upload a set-UID root program via FTP and then execute it via the Web server buffer
overflow, the attacker has root access on your system.
• Don't allow attackers to upload files with strange file names. Files with names like "-i" or file
names that begin with spaces can be hard to remove, and truly malicious file names can be
constructed that contain embedded shell commands that may be triggered by automated scripts.
• Also don't allow uploaded files to be overwritten by other users. You wouldn't want the crash
dump from on customer to get whacked by another customer's data. You wouldn't want a malicious
user to plant a Trojan horse copy of a file you're expecting from some other trusted source.

21

21

Safe Upload Configuration (1)

• Already getting some help in ftpaccess:
overwrite no anonymous
delete no anonymous
rename no anonymous

[…]

noretrieve /var/ftp
allow-retrieve /var/ftp/pub

[…]

path-filter anonymous /etc/msgs/path …

• This is why it is critical to get anon FTP
configuration right before doing uploads

The permissions we've already set up on the anonymous FTP directory, plus the
configuration commands in the ftpaccess file are already helping to protect us
from many of the dangers listed on the previous slide. Once again, having a "layered"
security configuration with lots of redundancy helps prevent simple individual
mistakes from becoming a big problem.
We want to prevent uploaded data from being downloaded. Well, the
"noretrieve" directive prevents downloads by default in our anonymous FTP area.
Restricting the file names of uploaded files is handled by the "path-filter"
directive we set up earlier. The anonymous user is already not allowed to
overwrite, delete, or rename files, so this should prevent uploaded files from
being clobbered by other users.
The ftpaccess command which actually allows uploads gives us even more
security and control, as we'll see on the next slide…

22

22

• Now add the upload directive:
upload /var/ftp * no
upload /var/ftp /incoming yes

root root 400 nodirs

• Uploaded files owned by root, mode 400:
– Can't be read/downloaded by ftp user
– Can't be overwritten by ftp user
– Will never be executable or set-UID

• Configuration redundancy is a Good Thing

Safe Upload Configuration (2)

Note: the second upload directive shown above should appear as a single long line in the
ftpaccess file.
The upload directive is used to control upload access in a directory. First specify the directory that
the upload command applies to, then specify the file and subdirectory elements within that
directory. Here we are first defining a default policy that uploads are not allowed at all in the
anonymous FTP directory. Actually, it's probably a good idea to add this first line even in the
ftpaccess file for "download only" FTP servers, just in case.
The next upload directive says that uploads are allowed in the /incoming directory under
/var/ftp. "nodirs" means that files can be uploaded but anonymous users are not allowed to
create their own subdirectories under the /incoming directory. When files are uploaded, the
resulting file will be owned by root, group owner root, and have mode 400 (read-only by owner).
Not only does this automatically strip off the execute and set-UID/set-GID bits, but it also
accomplishes many of our other security goals. Since the uploaded files will only be readable by the
root user, they can't be downloaded, overwritten, or deleted by anonymous users (user ftp). Once
again, redundant security configuration is a good thing.
Of course, there needs to be some mechanism to allow authorized users to retrieve (the now root
owned) uploaded files from your /incoming directory. You could give regular users on the
system sudo access to copy files out of this directory, or simply have an automated job that copies
files out of /incoming and into some publicly accessible area (possibly on another system inside
of the corporate firewall). It's also a good idea to automatically delete uploaded files after some
period of time (24 or 48 hours) just so the directory doesn't become too cluttered.

23

23

Now Create Upload Directory

• Upload area must be writable by ftp user–
set "sticky" as an extra precaution:
cd /var/ftp

mkdir incoming

chown ftp:root incoming

chmod 1300 incoming

• Directory mode 1300 means no dir listings–
possible problem for GUI-based FTP clients

Only after setting up the upload directives in the ftpaccess file should you
create the actual /incoming directory. This directory needs to be writable by the
ftp user so that anonymous FTP users can create new files in this directory.
The permissions used here are somewhat interesting. We're setting the "sticky bit"
on the directory so that only the owner of the file can delete a file from the
directory. Since all of the uploaded files will be owned by root, this is another
layer of security to prevent anonymous users from deleting uploaded files and
replacing them with different or malicious data.
We're also setting "write" and "execute" only permissions on the directory. This
means that anonymous users can upload files but they will be unable to get a
directory listing to see what other file names are there. File names in the upload
directory might give away useful information (host names, customer or supplier
names, etc.). Unfortunately, many GUI-based FTP clients expect to be able to get a
directory listing in order to operate– you may have to relax the directory
permissions to 1700 in order for these clients to operate.
Again, if you're really concerned about anonymous users being able to see file
names in the upload directory, you should look into "guest" user access to give each
user their own private directory space. "Guest" access is the topic of the next
section…

24

24

Guest Users

Guest user access is a way of providing many individual users their own private
FTP directory which they are unable to escape. Sort of a compromise between
anonymous access and "real" user access. In fact, if you are allowing regular users
to FTP into a system, you may want to set them all up as "guest" users instead so
that they cannot escape their home directories.

25

25

What Are They?

• Guest users have usernames/passwords
and homedirs just like regular users

• When guest users FTP in, they are
chroot()ed to their home directory

• Better than anon FTP because everybody
gets their own private directory
– Great for customer/partner access
– Also used for updates to personal Web pages

Guest users have entries in the system passwd and shadow files and passwords
just like regular users. The difference is that when a guest user logs in, they are
locked into their home directory just as if it were an anonymous FTP dir.
The standard use for guest users is for business partner and vendor access. You
don't want the data from your various business partners to intermingle, so each
organization you deal with gets their own login and home directory.
Another growing use for guest user access is to allow remote users to update their
own personal Web pages on some central Web server. The user gets locked up in
their own personal section of the Web document root and can only update files in
this area. Of course, the user pretty much has free reign within this area and could
still upload poorly written CGI scripts or other executable content that could be
used to compromise the system. The Web server administrator may wish to restrict
users to only static HTML content in this sort of arrangement. More on this in the
Apache section coming up next.

26

26

The Tricky Bits

• Guest users must have password entries,
but you don't want to allow normal logins:
– Give guest users invalid shell (/noshell, …)
– This shell must appear in /etc/shells!

• Would like to avoid creating /bin, /lib,
/etc, /dev directories for each user…

Now guest users must have passwd and shadow file entries, but in most cases
you only want your guest users to be able to log in via FTP (and not via SSH,
telnet, etc.). The way to block normal login access is to give guest users an
invalid shell in the last field of their passwd entry. Note, however, that this
invalid shell must be listed in the system /etc/shells file or the FTP daemon
will not allow the user to log in. Administrators may want to take advantage of the
"noshell" program (distributed with the TITAN security package–
http://www.fish.com/titan/)-- this program not only prevents logins, but
also logs a line of data to Syslog if a regular login is attempted on one of these
accounts.
If guest users were really chroot()ed to their home directory, then the
administrator would have to create "bin", "lib", "etc", and other directories for
each user just as if they were setting up an anonymous FTP area in each user's
homedir. If the system has hundreds of guest users, this would become
unmaintainable. Luckily, WU-FTPD has a nifty trick for dealing with this problem,
as we'll see shortly.

27

27

Initial Configuration

• Define basic guest access class:
class gst guest 192.168.0.0/16

• Now add basic settings for guest users:
log commands guest

log transfers anonymous,guest
log security anonymous,guest

• Any of the basic configuration commands
can be applied to guest users

The first thing we need to do to allow guest users is define the guest access class.
This is really no different from setting up the anonymous access class as we saw
earlier. Don't forget that you can restrict access by IP address if you only want to
allow guest user to have access from a limited range of network addresses.
All of the configuration directives that we applied to the anonymous class can also
be applied to guest users. Certainly we want to log everything guest users do on the
system (notice that we can turn on logging for multiple classes of users
simultaneously). You might also want to define special path-filter rules for
guest users– for example, you might want to allow guest users to upload file names
beginning with dot so that they can update files like .htaccess in their Web
trees. You can make guest user accounts "upload only" with the noretrieve
directive or "download only" by blocking access with the upload directive. Pretty
much every configuration directive we used for anonymous FTP can be applied to
guest user access as well.
Note that an FTP server can allow guest access without allowing anonymous access
(though this example is allowing both types of access simultaneously). It may be a
good idea to separate guest user access from full anonymous access. Anonymous
FTP servers are targets, and it may be better to move business partner data off to a
less well advertised system.

28

28

Which Users are Guest Users?

• List accounts after guestuser directive:
guestuser bob alice eve

• Use "guestuser *" to simply force all
users into guest access class

• /etc/ftpusers can selectively block users
who shouldn't have FTP access (e.g. root)

The next step is to define which accounts in the passwd file should be treated as
guest users. The guestuser directive allows the administrator to specify
accounts by username. The administrator can also specify accounts by a range of
UIDs: "guestuser %10000-19999" would mean that all users with UIDs
between 10000 and 19999 would be treated as guest users. This configuration
syntax is very useful on machines that have lots of guest users.
"guestuser *" says that all users in the passwd file will be treated as guest
users and locked up in their home directories. If you have to allow FTP access to a
system for normal users, this may be the safest way to do it (assuming the users
don't need access to data outside of their own home directories).
Don't forget that even if all users on the system are being treated as guest users, you
can still selectively block user FTP access with the /etc/ftpusers file. Again,
this file lists users who should not be allowed to FTP into the system.

29

29

Directory Restriction

• Here comes the trick:
guest-root /home

restricted-uid *

• "guest-root" is where chroot() occurs
�This is the place to create /bin, /lib, /etc, …

• "restricted-uid" causes WU-FTPD to
lock matching users into personal homedirs
�Not quite as secure as actual chroot()

OK, so how to we avoid having to set up anonymous FTP like directories in each
guest user's home directory?
Let's assume we are using "guestuser *" to make all users on the system guest
users, and further assume that the system puts user home directories under /home.
The trick is to tell WU-FTPD to chroot() itself to /home instead of each
individual user's homedir– this is what "guest-root /home" does. Now we
only need to create the "bin", "lib", etc. directories under /home and every guest
user can share them.
But wait! Now guest users will be able to see each other's directories– we don't
want that! "restricted-uid" tells the FTP server to enforce a restriction on all
matching users that prevents them from escaping their individual home directories.
Note that this restriction is enforced by the FTP daemon itself and not the system
kernel (as would be the case after a chroot() call). A programming error in the
FTP daemon (or a buffer overflow) could allow the user to escape their home
directory and see other directories under /home, but at least get no further than that
because of the chroot() to /home caused by the "guest-root" directive.
So the trade-off here is a potential loss of security (although nobody has reported
holes in the "restricted-uid" code to date) versus the cost of having to
maintain separate anonymous FTP style hierarchies in each guest user's homedir.
For servers with large numbers of guest users, the convenience factor of only having
to maintain one directory tree usually trumps the added security benefit of a strict
chroot() for each individual user.

30

30

Special passwd Config

• Setup of guest /bin, /lib, /etc dirs
essentially the same as for anon FTP

• Entries in guest area password file are
slightly special, however:
Regular /etc/passwd entry:
bob:x:500:500:Bob Smith:/home/bob:/bin/bash

Special /home/etc/passwd entry:
bob::500:500::/bob:

Having configured guest-root and restricted-uid per the previous slide, we now
need to create an populate the /home/bin, /home/lib, /home/etc, and other
directories. If the machine is also an anonymous FTP server, often the easiest thing to do
is to simply copy the directories from the anonymous FTP area into /home. Assuming
your anonymous FTP area is /var/ftp, you could do something like

cd /var/ftp

tar cf – bin lib etc … | (cd /home; tar xfp -)

If the machine does not already have an anonymous FTP area set up, you will need to
create these directories by hand per the guidelines earlier in this section. Again, your
vendor will typically provide some sort of script to help you create anonymous FTP
directories– this script could also help you create the guest root directory.
For the restricted-uid directive to work properly, however, you will need to munge
each user's /etc/passwd entry slightly before copying it into /home/etc/passwd.
For one thing you should strip out all unnecessary information. The guest area passwd
file only needs the user's username, UID, GID, and home directory fields– get rid of
everything else. The other important change is to make the user's home directory entry
relative to the guest-root: /home/bob becomes just /bob if the guest-root is
/home. This homedir entry in the guest area passwd file tells the restricted-uid
directive which directory each user should be locked up in.
Like anonymous FTP areas, the guest user "etc" directory should never have a shadow
file installed in it.

31

31

Summary: WU-FTPD

• WU-FTPD features are nice when needed–
use a simpler FTPD for "download only"

• History of security holes– stay up-to-date!

• Be very careful with anonymous uploads
and employ layered configuration defense

• Guest user functionality great, but
sometimes tricky to configure properly

WU-FTPD has a lot of other interesting configuration options that we haven't
covered here. Check out the ftpaccess manual page for additional information.
All of the WU-FTPD documentation, manual pages, and sample config files are
available on-line via http://www.wu-ftpd.org and
http://www.landfield.com/wu-ftpd/

WU-FTPD is complex software and security holes tend to be discovered with
alarming regularity. Make sure you keep up-to-date on WU-FTPD releases. Also
be sure to employ lots of redundancy in your WU-FTPD security policy by using
good directory and file permissions, and taking advantage of all security options in
ftpaccess– even when they overlap in functionality.
Guest user access is a useful feature unique to WU-FTPD. Again, you might even
consider restricting regular users to guest-only access on your systems which still
allow FTP access, as long as those users never need to access files outside of their
personal home directories.

32

32

Apache Web Server

This section covers basic security configuration information for the Apache Web
server (by far the most popular Web server on the Unix platform). This section
does not attempt to address security issues with server-side application
environments like Tomcat, Websphere, etc. Consult appropriate vendor
documentation in these areas.

33

33

Biggest Security Problems

• Poorly written CGI scripts and other
"server-side" executables

• Buffer overflows

• Poor configuration practices:
– Running servers with privilege
– Running "helper apps" with privilege
– Overlapping Web root with other data/apps
– Programs, libraries, config files in doc root

Before we start talking about how to secure Apache Web servers, it's useful to look at some of the
most common ways Web servers are compromised.
One common issue is not a Web server security issue per se, but rather the fault of badly written (or in
some cases maliciously written) code that is run by the Web server. While the latter part of this
section will discuss some basic guidelines for writing secure CGI programs, complete coverage of
secure server-side programming could take an entire day. The short answer is, disable server-side
execution if you're not using it, and make sure to carefully review any server-side code you are
running. Also take steps to protect the software that's being run by the server and keep it out of the
normal document trees (more on this later).
The Apache Web server has had its share of buffer overflow problems. Keeping up-to-date on
software releases is the primary defense here. Of course, you may be vulnerable to a previously
undiscovered exploit in the current code, so some sites will run their Web servers in a chroot()
environment. However, chroot()ing a complex Apache install with lots of CGI scripts and other
server-side executables can be difficult.
Most of the other common Apache exploits come down to poor administration and configuration.
There should never be a reason to run the Web server or any other apps related to the server (like
CGIs, mySQL servers, etc.) with root privileges– all of these processes should be running as unique
unprivileged UIDs. Another common mistake is to overlap the Web document root with the data area
of another server– for example, sites that mix their Web docs with an anonymous FTP
upload/download area. This opens a window for security problems in one service to impact the other,
or possibly sets up a way to turn small vulnerabilities in each service into a massive problem for the
machine as a whole. Another common mistake is to put executable code and/or server configuration
files into the document root (some sites have accidentally put server password files and site
certificates in vulnerable locations!). This may allow external attackers to view the source code for
your apps (making it easier to spot vulnerabilities in the software).

34

34

apache.org Compromise

• Jan 2001 compromise of apache.org is
clear example of these kinds of errors:
– Web root and anon FTP area overlapped
– Uploads to FTP area handled insecurely
– Web server allowed server-side execution
– mySQL server running as root

• Result was just a cute defacement, but
could have been much worse…

The January 2001 break-in at apache.org is a good example of the kinds of
configuration mistakes we were discussing on the previous slide:
• At the time of the incident, the apache.org server's Web root and FTP server
area overlapped.
• Furthermore, the FTP area allowed files to be uploaded with insecure permissions.
• The attackers were able to upload a PHP document that allowed them to execute
arbitrary commands via the Web server.
• The attackers also uploaded a network listener daemon, which they triggered via
their PHP document that gave them a shell (as an unprivileged user) on the box.
• Once on the box, they investigated the system and found that the mySQL server
was running as root and was accessible from their account. A username and
password for accessing the server were found in one of the CGI scripts on the box.
• They were able to coerce the mySQL server into writing arbitrary files (though it
wouldn't overwrite existing files). The attackers put a "create set-UID shell" script
into /root/.tcshrc and waited for one of the admins to su to root. Game
over.
The full description of the incident (from the perpetrators themselves) can be found
at http://downloads.securityfocus.com/library/deface_apache.txt. Perhaps the most
humorous part of the write-up is the comment from the attackers: "We didn't wanted
[sic]to use any buffer overflow or some lame exploit". Nice to see they have some
professional standards…

35

35

The Rest of This Section

� Configuring Apache

� Dealing with CGIs

� SSL Configuration

Covers both v1.3.x and v2.x servers!

The rest of this section is devoted to looking at the security-related issues around
running an Apache Web server. This is not a complete course on how to administer
Apache, just enough to allow you to talk to your server admins and content
developers about the "right" way to run things.
Configuring Apache covers the basic Apache server configuration directives that
can be used to improve security. Dealing with CGIs talks about the "right" way to
set up CGI bin directories and gives some high-level guidance on doing the "right
thing" when writing CGI programs. SSL Configuration looks at how to get SSL
support into Apache and also covers topics like getting server certificates.
All of the configuration commands in this section apply equally well to both v1.3.x
Apache servers as well as the new v2.x servers. Frankly, most of the changes in
Apache 2.x have been internal– the configuration file syntax (for better or worse)
hasn't changed much at all.

36

36

Configuring Apache

In this section we'll look at some basic "best practices" to use when configuring
your Web server. Many of the topics covered here are also covered in the Apache
"Security Tips" document available from
http://httpd.apache.org/docs/misc/security_tips.html

37

37

Three Config Files?!?

• Apache used to need three config files:
httpd.conf – basic configuration
srm.conf – doc trees and directory aliases
access.conf – access control

• Caused confusion– admins would fail to
complete updates in all files

• Current standard is to now put
everything in httpd.conf

In the old days Apache used three different configuration files– this is actually a
hold-over from the original NCSA httpd that Apache was based on. The
httpd.conf was used for basic server setup (what IP address and port to listen
on, the number of child processes to fork, etc.). Document trees, CGI directories, et
al were set up in the srm.conf file. Finally, the access.conf file was used for
all of the access control configuration (IP address based access controls, password
protected directories, etc.).
The problem with this scheme was that it almost encouraged configuration
mistakes. For example, admins would change a document directory in srm.conf,
but forget to update the appropriate entry in access.conf– suddenly a directory
that had been password protected might be available to the world.
As of Apache 1.3.x, the standard is to now put all configuration directives in
httpd.conf (though you can still use the old "three file" setup if you want). This
makes for a more complicated configuration file, but in the long run seems to work
better. The 1.3.x Apache distribution still ships with access.conf and
srm.conf, but these files contain only comments and no configuration directives.

38

38

Basic Server Config

ServerName www.sysiphus.com
UseCanonicalName on
Listen 0.0.0.0:80 # default

User www # create special

Group www # ditto

ServerAdmin webmaster@sysiphus.com
ServerSignature off
ServerTokens Prod # hides version

Setting the Web server's internal ServerName may not seem important from a security perspective,
but using a single canonical name can be important with sites that are password protected. Basically
this is because browsers cache authentication information by URL– if the Web server doesn't use a
consistent canonical name, then you may end up prompting users several times for password access
to the same information. The UseCanonicalName directive tells the Web server to always use
the value of ServerName when constructing so-called "self-referential" URLs, so that naming will
be consistent throughout your Web site.
We'll talk about the Listen directive on the next slide. User and Group determine what
privileges the Web server should run with. Create a specific UID and GID for your Web server and
never run Web servers as root.
ServerAdmin is the email address of the person who should be contacted in case of problems– this
address appears in various error messages by default. ServerSignature controls whether or not
a footer message (which happens to contain the Apache server version number) should be appended
to server-generated error messages and other server generated docs. Generally we'd like to hide the
server version by turning this off. Similarly, ServerTokens controls the format of the server
header returned on HTTP requests. The most minimal setting is "Prod" which causes on the word
"Apache" to be displayed (without version number, etc.)– many automated worms trigger on the
Apache version number presented here, so you can slow down infection by hiding this information.
If you want to hide that you're running "Apache", you'll actually have to hack the httpd.h file in
the source distribution to change the values of the SERVER_BASE* variables and recompile. If
you're going to this extreme, though, you'll also want to change the default error documents, etc.
because the format of these messages gives away the fact that you're using Apache.

39

39

Quick Aside: Local Servers

• Developers may need local Web servers

• Security admins worry about potential
security disaster with that many servers

• Consider having server bind to localhost:
ServerName localhost
Listen 127.0.0.1:8080

• Now only the local developer can see the
server running on their machine

Listen sets the IP address and port number which the server is listening on. By
default the Web server will try to listen on port 80 for all of the machine's IP
addresses (represented as the special address 0.0.0.0), but the admin may choose
to bind the server to a specific address if desired. This could allow the admin to
bind the server to a special "protected" interface on the system (and this is also used
for setting up Web servers on "virtual" IP addresses for hosting multiple sites on the
same physical machine). But there's also another use for the Listen directive.
In Web development shops, it's pretty common for every developer to have their
own local Web server(s) running for development and testing. That's a lot of Web
servers on a network– any one of which might be running some untested code
which contains a security vulnerability. Not to mention the fact that the Web server
software itself might have a buffer overflow or other remote exploit. Now the
network used by your developers is probably protected by your corporate firewalls
and security infrastructure. Still security admins may worry about having so many
essentially "self-supported" Web servers running out there.
One option is to use the Listen directive to bind the server only to the "loopback"
address on the system– address 127.0.0.1. The developer using the system can
still "see" their local Web server by pointing their browser at
"http://localhost/", but nobody outside of the system will be able to access
the Web server. This seems like a reasonable compromise for everybody
concerned.

40

40

Start at the Top

• Default policy should block all access:
<Directory "/">

Options None

Order allow,deny
Deny from all
Satisfy all
AllowOverride None

</Directory>

• Override settings for specific dirs as needed

The next step in server configuration is to define access controls for the various
directories served by the Apache software. "Best practice" is to first define a
general "default deny" stance for the entire file system as we do here. Later we will
configure access to specific directories that are actually part of the Web server's
document trees.
If we first set a default policy of allowing no access and then have to explicitly
enable access for Web server directories, this can help prevent "accidental"
misconfigurations where material ends up getting into the Web server tree that
doesn't belong there. This "default deny" policy also helps protect the server
against attacks (like the recent "directory traversal" attack reported in Aug 2002)
which allows external attackers to "escape" from the document trees and walk the
file system of the local server.
So here we're setting options for the directory "/", or the root of the file system on
downward. These options are put into a <Directory…></Directory>
"container" which specifies the specific physical directory structure the options
apply to. The alternative is to use <Location…></Location> which specifies
a URL path rather than a physical directory. Frankly, <Location…> is
confusing– best to stick with the literal path names on your system and use
<Directory…>.
As for what all of these options mean, well we'll cover that in the next fifteen slides
or so…

41

41

Setting Options Field

• Options can be any/all of the following:
Indexes

FollowSymlinks/SymlinksIfOwnerMatch
Includes/IncludesNOEXEC
ExecCGI

MultiViews

• "All" and "None" are also supported

• Some options have surprising results…

Options defines a list of the optional behaviors that are defined for the Web server on a given
directory structure. Generally, the Options directive is written as a space separated list of the
options you want turned on
Options Indexes Multiviews FollowSymlinks

Any option not specifically listed is disabled.
However, an alternate form is to list options with +/- to specifically enable/disable certain options:
Options +Indexes +Multiviews +FollowSymlinks –Includes –ExecCGI

It turns out the second form shown above can have some unexpected consequences when Options
is set on both a parent directory and one of its sub-directories– when +/- is used for all options, then
the union of the Options for parent and subdirectory is used. Best to use the first form.
"Options All" sets all options except MultiViews which must be set explicitly (this appears to
be due to the "organic" nature of the growth of Apache– MultiViews is a relatively recent
development). "Options None" disables all options (per our "default deny" stance on the
previous slide).
Of all of the options shown here, only MultiViews has no real security implications
(MultiViews enables "server negotiated" content– typically used to select multiple versions of the
same Web document translated into different languages). We'll talk about ExecCGI later in the
section when we talk about CGIs in general. But let's take a look at the other options right now…

42

42

Indexes Option

• Accessing a Web directory usually
causes index.html file to be shown

• If index.html doesn't exist, Web
server returns "404 Not Found"

• When Indexes is turned on, directory
listing is displayed instead

• May not want this– can show "private"
files, and give away docroot structure

Normally when you view a URL like http://www.sans.org/info/, the
Web server displays a file called "index.html" in the "info" subdirectory of
the Web server document root (actually, the file name doesn't have to be
index.html– the file name can be set by the server administrator). If this file is
not found, then by default the Web server will display the ever-popular "404 Not
Found" error.
However, if Indexes is turned on for a directory, the Web server will instead
show a directory listing of the other files and subdirectories in the given directory.
Sometimes this is useful– particularly if you're using your Web server as a
mechanism for sharing files. However, it can also be a problem– if somebody
deletes the index.html file or forgets to create it in the first place, then you may
be exposing files and directories that you didn't want to expose. It may also allow
remote users to navigate into sections of your document tree that they shouldn't
know about (though honestly if the information is that sensitive it either shouldn't
be on the Web server in the first place or at least should be password protected).
Generally, it's best to disable Indexes unless you're sure you're going to need it.
This has the best chance of preventing "accidental" errors which expose your doc
root to scrutiny.

43

43

Symlink Options

• Basic idea is simple:
FollowSymlinks: Web server will follow

symlinks– even out of normal doc tree
SymlinksIfOwnerMatch: only follow link

if link owner and file owner are the same

• Disable FollowSymlinks to improve
security, but has performance impact

• SymlinksIfOwnerMatch doubles
performance impact

When FollowSymlinks is enabled, then the Web server will simply "open" any
symbolic links in the doc root without question and display the contents of the file pointed to
by the symbolic link. This means that content maintainers could accidentally create a
symlink which points to a critical system configuration file and expose the contents of that
file to the world. Now of course this file must still be readable by whatever user the Web
server is running as, but this still may be something of a concern.
So, the first impulse is to turn FollowSymlinks off. However, doing this has an
unexpected performance impact. The server must now check each "file" in the doc root
before opening it, just to verify that the file is not in fact a symlink. This means an extra
system call before each and every file opened by the Web server– which amounts to a lot of
extra work on a busy server. For this reason, many sites choose to leave
FollowSymlinks enabled. You can scan your document trees periodically for symlinks
(perhaps even verifying that the links don't point out of the doc tree), or even run the Web
server chroot()ed if you're really concerned.
Another option is SymlinksIfOwnerMatch, which means only open the file pointed to
by the symlink if the owner of the file and the owner of the symlink are the same UID. This
was designed to prevent Web developers from accidentally pointing to root-owned system
configuration files. Of course, this now means that the Web server potentially has to do
multiple system calls on each file open– one to check for a symlink, and then additional calls
to get the name of the file the link points to and the owner of that file.
Still, if your Web server is not heavily loaded, just don't enable FollowSymlinks at all.

44

44

Includes Option

• Allows "server parsed HTML" capability

• Has some real advantages:
– Include standard headers/footers
– Add limited dynamic content w/o using CGI

• Beware #exec option, however

• Consider using IncludesNOEXEC,
which disables #exec command

Includes turns on "server parsed HTML" capability (usually indicated by files with the
".shtml" extension). This is a simple way to get bits of dynamic content into otherwise static
HTML files without going to the trouble of writing a full CGI or PHP program. Another use for
server-parsed HTML is to automatically include certain standard header/footer information in
many different documents. For example, some sites include a copyright statement at the bottom of
each page– updating the copyright date in a single file is much easier than having to modify all of
the Web pages on your site.
However, server parsed HTML includes the #exec command which runs a specified command
and substitutes the output of that command into the document (like the date command to display
the current date/time on the page). This opens the door for a badly written document to execute a
command which has unexpected consequences on the system. As an alternative, you can set
IncludesNOEXEC which enables server parsed HTML, but disables #exec.
As an aside, we mentioned that server parsed HTML files are generally distinguished by the
".shtml" extension. This is accomplished by setting up a special "handler" for files with this
extension:

AddType text/html .shtml

AddHandler server-parsed .shtml

Another option, however, is to set "XBitHack on", which causes any HTML file that has the
execute bit set to be treated as a server parsed HTML file. On the plus side, this means that
outsiders won't know that the file is server parsed HTML because you no longer need the
".shtml" extension. On the minus side, it's easy to mess things up and forget to set the execute
bit (or lose the bit when copying files from one directory to another) or to set this bit on files
which shouldn't have it.

45

45

IP-Based Access Control

• Use "Allow from" and "Deny from"
to control access from:
Hosts – use host name or IP address
Networks – use "net/mask" or CIDR notation
Domains – use domain name

• Must be used with Order directive–
this is the confusing part…

Now let's look at how to control access to Web directories based on the IP address
of the remote machine.
Apache uses "Allow from" and "Deny from" to permit/deny access based on
IP address. You can specify host names or IP addresses of individual machines, or
even entire networks using either network/mask syntax (e.g.
192.168.1.0/255.255.255.0) or CIDR notation (192.168.1.0/24).
You can even specify domain names. Note however that using host names and
domain names depends on attackers not being able to spoof or corrupt the local
DNS server– best to use IP addresses whenever possible.
By the way, you can also use the special keyword "all" ("Deny from all",
"Allow from all") as a wildcard.
If "Allow from" and "Deny from" were the entire story, then things would be
simple. However, there's an extra complication because of Apache's Order
directive– more on this on the next slide…

46

46

The Order Directive

� Just remember that Order controls:
– Eval order for Allow/Deny commands
– Default behavior if no matching Allow/Deny

"Order Allow,Deny"
– Process Allow statements, then Deny rules
– Default is access denied

"Order Deny,Allow"
– Do Deny statements first, then Allow rules
– Access is allowed if no match

What's confusing about the Order directive is that it actually controls two
essentially unrelated parameters. First, the Order directive controls the order in
which Allow/Deny statements are processed– which is sort of intuitive given the
name "Order". However, Order also defines a default policy for connections
which don't match one of the explicit Allow/Deny statements given by the
administrator– and, of course, the default policy is different depending on how the
Order statement is written.
Basically the administrator has two options. "Order Allow,Deny" says to
process the "Allow from" statements first, and then all of the "Deny from"
statements. However, "Order Allow,Deny" also means that the default is to
drop any connections that don't have an explicit matching "Allow from" (in
other words, "Order Allow,Deny" is the standard default deny stance).
The alternative is "Order Deny,Allow". Here the "Deny from" statements
are processed first, and then the "Allow from" statements. The default for
"Order Deny,Allow" is to permit any connections that aren't explicitly blocked
by "Deny from" (making this the default permit stance).
Confused yet? Let's try the example on the next slide…

47

47

An Example

• Suppose we had the following:
Allow from sysiphus.com

Deny from foo.sysiphus.com
Order Allow,Deny

• What happens with various connections?

• Now reverse the Order statement–
what happens to the same connections?

Given the example shown on the slide, let's consider a few different scenarios:
• If a connection comes in from the host foo.sysiphus.com it will be denied– first the "Allow
from" is consulted (access would be permitted because foo.sysiphus.com is part of
sysiphus.com), and then the "Deny from" (which explicitly blocks foo.sysiphus.com).
• Connections from any other host in sysiphus.com would be allowed– these would match the
first "Allow from" and be allowed, falling through the "Deny from" directive because they
don't match.
• Connections from all other hosts would be blocked– these connections don't match either the
"Allow from" or the "Deny from", so the implicit "deny everything" caused by "Order
Allow,Deny" takes over and drops these connections.
OK, that was easy! Now suppose we changed the Order line above to "Order Deny,Allow"
and left everything else the same:
• Now all of a sudden connections from foo.sysiphus.com are allowed– the "Deny from" is
now consulted first (which would normally block the connection), but then the "Allow from" is
checked (which allows connections from anything in sysiphus.com– including
foo.sysiphus.com which otherwise would be blocked)
• Anything else in sysiphus.com is also allowed because of the "Allow from"
• Other hosts are also allowed– remember that our default policy is now "permit everything" because
we now have "Order Deny,Allow"
Frankly, it's hard to imagine how the Apache folks could have messed this up any worse. They
should have simply emulated the same sort of ACLs used by TCP Wrappers and have done with it,
but they didn't.

48

48

Granting Access to Doc Root

DocumentRoot "/var/apache/docs"

<Directory "/var/apache/docs">

Options Indexes SymLinksIfOwnerMatch \

IncludesNOEXEC MultiViews

Order deny,allow

Allow from all

AllowOverride None

</Directory>

OK, with all of that out of the way, let's look at how we might allow access to our
Web server document tree. Remember that we implemented a "default deny"
stance on the root file system, so we have to explicitly enable access to our
DocumentRoot.
We do this by setting options on the appropriate directory in another
<Directory…></Directory> container– these settings will override the
settings for the "/" directory we set up earlier. First we set our Options directive
to include the options we want on our doc root. Next we need to allow access from
all hosts on the Internet with the "Order" and "Allow from" directives (more on
AllowOverride later in this section).
Note that the "Allow from" here is actually redundant. Since we have "Order
deny,allow" the default policy would be to allow all connections anyway. Most
people prefer to have the explicit "Allow from all" anyway, just to make
things more self-documenting. By the way the, "Order allow,deny" and
"Deny from all" that we had set on the "/" directory several slides ago was
also similarly redundant.

49

49

Password Access

• Directories can be password protected

• Web is stateless– username/password
are resent for each page requested

• Standard is "Basic Auth"– passwords
are sent in the clear

• More secure alternative is "Digest
Auth"– most browsers don't support it

In addition to IP address based access controls, portions of your Web space can also be
password protected. When entering a protected document space for the first time, the user is
prompted for a username/password (this is generally referred to as "HTTP Basic Auth"). What
the user doesn't see is that this same username/password is transmitted over and over again on
each and every request for a document from that section of the Web tree– the browser caches
the username/password and simply resends it without prompting the user (when the browser is
killed and restarted, the user must re-enter the password). The bad news is that the
username/password travels over the network in the clear and can be easily sniffed. So it's a
good idea to combine HTTP Basic Auth with SSL encryption.
The alternative to Basic Auth is "Digest Auth"– Digest Auth transmits an MD5 hash of the
user's password rather than the password itself. This prevents the password from being sniffed
directly, but brute-force attacks are possible to recover the password from the MD5 hash. The
other problem with Digest Auth is that very few Web browsers support it. MSIE 5.x and
Opera 4.x support Digest Auth, but Netscape, Mozilla, et al do not. This means that Digest
Auth isn't really generally useful.
To enable Digest Auth in Apache, you must configure the server with --enable-digest
and recompile. Further information on configuring Digest Auth can be found at:

http://httpd.apache.org/docs/howto/auth.html#digest

50

50

Managing Password Files

• Format of Apache password files is:
username:password[:ignored]

• Don't use /etc/shadow file– users
should have different Web passwords

• Admin can use htpasswd command to
manage Apache password file

• Keep password files out of doc trees!!!

To password protect part of the Web tree, we first need a password file. The format of Apache
password files is simple– just the username, a colon, and an encrypted password string. Anything
after the encrypted password is ignored by Apache– so it's possible to simply use a copy of the
system /etc/shadow file (you'd have to use a copy because /etc/shadow wouldn't normally
be readable by the Web server user). This is a terrible idea for two reasons: (1) you'd have a copy of
/etc/shadow on your system that was readable by a non-root user, and (2) users should use a
different password for Web access and login access because Basic Auth insists on retransmitting the
username/password all the time. It's also important to put the Apache password files someplace
outside of the Web document tree (nothing is worse than finding your Web password file indexed on
an Internet search engine). As we'll see, Apache allows the administrator to specify the location of
the password file anywhere in the file system.
The htpasswd command provided with the Apache distribution allows the admin to add/remove
users and change passwords. The syntax is "htpasswd [-ms] <pwdfile> <username>"
where <pwdfile> is the path to the Apache password file, and <username> is the name of the
user being added/changed. By default htpasswd uses old-style DES56 password encryption. The
–m option tells htpasswd to use MD5 encryption, and –s uses SHA-1 (the same password file may
have different passwords using all three types of encryption).
So here's how to add user "hal" to /var/apache/etc/passwd with MD5 password
encryption (the same command is also used to change the password for user "hal"):

htpasswd –m /var/apache/etc/passwd hal

In this mode, the admin will be prompted for the password for the user's new password. htpasswd
also supports "batch mode" where passwords can be entered on the command line (good for scripts):

htpasswd –mb /var/apache/etc/passwd hal NewP8ssw0rd

Of course this means that the user's password would be at least momentarily visible via ps.

51

51

Sample Directory Config
<Directory "/var/apache/docs/private">

AuthType Basic
AuthName "Private Info"
AuthUserFile "/var/apache/etc/passwd"
Require valid-user

</Directory>

• "Require" directive is critical
• Can optionally use Berkeley DB or DBM

password files to improve performance

Here's how to actually configure password based access control on part of the doc tree. "AuthType
Basic" says that we should use HTTP Basic Auth (as opposed to "AuthType Digest" for
Digest Auth). "AuthName" is a string that is used as part of the username/password prompt by the
browser– in this example, the prompt on the pop-up box would read something like "Enter
username/password for Private Info". "AuthUserFile" is the location of the Apache password
file– again, put this file someplace outside your document tree. Different directories can use
different password files or all share the same file.
The Require directive says that the user must enter a valid username/password before being given
access. If you forget to put the Require directive into the config file, then the username/password
box will pop up but any username and password will allow access! The reason the Require
directive exists at all is that it's also possible to say "Require hal sally bob", which would
only grant access if the username were one of the three listed users (and obviously only if the correct
password for the given account was entered as well).
One problem with standard flat text password files is that as the number of users grows, finding a
particular user in the file takes longer and longer. And again remember that the username/password
verification has to be done on each and every document access from the restricted area. For
performance reasons, it's possible to create your password files as DBM or Berkeley DB style
database files to enable faster lookups. You must reconfigure Apache with --enable-auth_db
or --enable-auth_dbm flags and recompile before this is possible, however. Once the server
has been properly built, simply use AuthDBUserFile instead of AuthUserFile. The Apache
distribution comes with the dbmmanage program for managing user accounts in DB or DBM style
database files. Again, for more info see

http://httpd.apache.org/docs/howto/auth.html#database

52

52

Access by Password or Address

<Directory "/var/apache/docs/locals-only">
AuthType Basic
AuthName "Local Info"
AuthUserFile "/var/apache/etc/passwd"
Require valid-user

Order allow,deny
Allow from 192.168.0.0/16
Allow from 127.0.0.1
Satisfy any

</Directory>

Now it's possible to discuss the "Satisfy" directive we saw in an earlier example.
Satisfy simply controls the relationship between the various forms of access
controls defined on a particular part of the doc tree. This includes IP based access
controls and password based access controls. Basically the choice is either
"Satisfy all", which means that both the IP based restrictions must be satisfied
and a proper username/password entered, or "Satisfy any" which means that
either the IP address must match or a correct username/password must be used.
This latter case is useful when you want to have a section of your Web tree that's
only visible to "local" people. In the example on the slide, our IP based access
controls allow access from the 192.168.0.0 network– since "Satisfy any"
is defined, then as long as the connection comes from a host on this network, a
password will not be required (in fact, the prompt will never even appear since the
IP address of the source of the connection is checked first). Connections from other
IP addresses will cause the password popup box to appear and force the user to
enter a valid password.

53

53

What's AllowOverride Do?

�AllowOverride allows configuration
commands to go in files in doc trees

PRO:
– Delegate administration to various groups
– Reconfigure server without restarting

CON:
– Security policy spread throughout doc tree
– Performance hit

The last configuration command to discuss is the AllowOverride option. Enabling
AllowOverride allows the owner of the document tree to create a configuration file in the doc
tree itself which overrides settings in the httpd.conf file (usually these files are named
.htaccess, but this is customizable as we'll see).
On the plus side, this allows the Web server administrator to delegate administration to the owner of
the document tree. For large Web environments, this may be the only manageable solution. Another
advantage is that these configuration files are read every time a document is accessed from the given
document tree, so any changes made to the configuration in these files takes effect immediately
without having to restart the Web server (changes to httpd.conf require at least a HUP to the
running daemon).
This is actually also a problem as well. Since the Web server has to look for these per-directory
configuration files when AllowOverride is set, and since these files then need to be parsed by the
Web server when found, this causes a performance hit for each and every file access. In fact, if
AllowOverride were set on /var/apache/docs, and the file being accessed were in
/var/apache/docs/local/config, the Web server would actually have to look for override
files at each level of the tree from /var/apache/docs on downward. This is a real problem for
deeply nested trees.
The other problem is that the security policy for the Web server is now spread throughout the
document tree. This not only makes it difficult to know how the server or a particular part of the
document tree is configured, it also makes it easier for somebody to make a mistake which opens up
a vulnerability on the machine. And since the mistaken configuration directive in hidden away in
some random file in the doc tree, it could go unfound for a long time.

54

54

AllowOverride Syntax

• AllowOverride can be "All" or "None",
or any/all of the following:
Options – Change Options settings
Limit – Address-based access controls
AuthConfig – Password auth configuration
Indexes – Directory listing "look and feel"
FileInfo – Document and language control

• Allow setting of Indexes option with
Options override, not Indexes!

The Web server administrator actually has some level of control over what
configuration settings may be overridden in the per-directory config files.
AllowOverride can be set to "None", which disables overrides entirely, or
"All", which basically means that any configuration option can be overridden.
However, the administrator may also choose to only allow overrides for certain
groups of commands, as defined by the five options shown here.
"AllowOverride Options" means that the per-directory config files can
override any of the Options set in httpd.conf for that directory (it also allows
the XBitHack option for server parsed HTML to be turned on here as well). The
Limit override allows the per-directory config file to set "Allow from", "Deny
from", and "Order" to set IP based access controls. AuthConfig allows the
per-directory config file to set all of the Auth* and Require directives used for
password based access controls.
Indexes and FileInfo don't particularly have any security-related impact.
"AllowOverride Indexes" just allows local control over how directory
indexes appear, but doesn't allow the local config file to change the value of the
Indexes option– the Web server administrator needs to set "AllowOverride
Options" to allow this to happen.
Multiple override options may be specified with a single AllowOverride
directive– simply enter a space-separated list of the desired overrides (example on
the next slide).

55

55

Using AllowOverride

AccessFileName .htaccess

<Files ~ "^\.ht">

Order allow,deny

</Files>

<Directory "/var/apache/docs/locals-only">
AllowOverride Limit AuthConfig

</Directory>

AccessFileName defines the name of the override file recognized by the Web
server. Again, the default is usually .htaccess, but you might want to choose a
different standard for your Web servers to try and prevent external attackers from
stealing these files out of your doc tree.
Whatever name you end up choosing, it's important to prevent these files from
being displayed by your Web server. Here we're using the a
<Files…></Files> container to deny access to any file on our Web server
named .ht* (actually "<Files ~ regexp>" has been deprecated– you're
supposed to use "<FilesMatch regexp>" instead– but I still do it the old-
fashioned way). Another example of this useful feature would be to block access to
backup files created by common editors (like *~ files created by Emacs, or .bak
or .sav files):

<Files ~ "*(\~|\.bak|.sav|.orig)$”>

Order allow,deny

</Files>

Now we can set AllowOverride for our "locals only" document tree that we set
up in the previous example. No further configuration would be required in
httpd.conf– the contents of the <Directory…></Directory> container
in our previous example would simply go into the .htaccess file in the
/var/apache/docs/locals-only directory.

56

56

Dealing With CGIs

We mentioned earlier that insecure CGI programs were one of the common sources
of compromise for Web servers. In this section we look at what CGIs are, how to
enable CGI support safely in Apache, and give some pointers on safe CGI
programming and administration.

57

57

Overview

• "Common Gateway Interface" defines
how to write programs to generate HTML

• CGI programs can be written in any
language– Perl is popular on Unix

• Programs execute with privileges of the
Web server user

• Badly written CGI scripts the primary
source of compromise for Web servers

The "Common Gateway Interface" defines a standard for programs which can be
executed by the Web server and dynamically produce HTML content. Since the
program being executed can do essentially anything to generate the HTML (connect
to databases on other systems, execute shell commands, etc.) this is a very powerful
mechanism. However, these CGI programs are running on the Web server with the
privileges of the Web server user, so a badly written CGI script can cause a fair
amount of trouble.
Bottom line is that any code that's going to be executed on the Web server needs to
be carefully scrutinized for potential security problems.

58

58

Enabling CGI Access

• Restrict CGIs to a tightly controlled area:
ScriptAlias /cgi-bin/ "/var/apache/cgi-bin/"

<Directory "/var/apache/cgi-bin/">

Options None

AllowOverride None

Order deny,allow

</Directory>

• Avoid using "Option ExecCGI" which
scatters CGI scripts throughout doc trees

There are two ways to enable CGI scripts with Apache– a "right way" and the "wrong way". The
"right way" is to restrict CGIs to one (or at worst a small number) of tightly controlled directories
which are not part of the normal document tree. Only a few people should be authorized to add CGIs
to this directory, and then only after close scrutiny of the program and some serious testing. CGI
directories are created with the ScriptAlias directive– in the example on the slide we're saying
that http://www.ourdomain.com/cgi-bin/foo means "run the program foo from the
directory /var/apache/cgi-bin". Our "default deny" stance that we set up on the root of the
file system means that we need to explicitly allow access to this CGI bin directory using the
configuration commands in the <Directory…></Directory> container.
The alternative to setting up restricted CGI bin directories with ScriptAlias is to use the
ExecCGI option on directories in the document root. Typically ExecCGI needs to be combined
with an AddHandler directive so that the server can recognize CGI programs:

AddHandler cgi-script cgi pl sh

Now any file that ends with the extension .cgi, .pl, or .sh will be executed as a CGI script.
The problem with ExecCGI is that now anybody with access to the doc root can drop in a CGI
script that could contain a vulnerability that compromises the system. If there are a lot of people
providing content to the Web server, the situation can get out of control quickly. The Apache
"Security Tips" document recommends using ExecCGI if and only if:
• You trust your users not to write scripts which will deliberately or accidentally expose your system
to an attack.
• You consider security at your site to be so feeble in other areas, as to make one more potential hole
irrelevant.
• You have no users, and nobody ever visits your server.

59

59

Hints for Safe CGIs

• Do not trust user input or environment
variables– always validate before using

• "Hidden form fields" aren't hidden

• Always do bounds checking before
copying inputs in memory

One of the most common uses for CGI scripts is processing form submissions containing user inputs.
This is also the place where the most serious CGI security mistakes are made. The most important
thing to remember is that that Web form can easily be modified by the user at the other end of the
connection and the results that are posted back to the Web server can contain absolutely anything
that user desires (it's easy enough to fake POST operations back to the Web server, but a more simple
approach is to save the Web form as an HTML document on disk, make the appropriate changes, and
then POST the data back from the hacked version of the form).
This means that validating the results of form input is critical. One common mistake is to use form
input as arguments in shell commands in a CGI script. But a malicious user could have embedded
shell commands ("; rm –rf /*") in a form field. If your CGI script is written in the shell or Perl,
this can cause major problems. Another trick is to embed HTML or Javascript code in form fields–
if the form data is used to generate a Web page, again there could be problems. If possible, it's best
to tightly define what should be present in a given input field: "phone numbers should contain digits,
parens, + and –", "the right-hand side of an email address can only contain alphanumeric characters
plus dot and dash", etc. This is better than trying to look for a set of "dangerous" characters because
you may not be able to clearly define what's "dangerous" in all cases.
It's also important to do bounds checking on form input– particularly when you're using a language
like C for producing CGI scripts (rather than Perl which dynamically allocates memory for data
structures). Even though you've defined the form field to be only 40 characters long, a malicious
user could send you 4K worth of data which includes a buffer overflow exploit.
Note also that those "hidden" form fields that programmers like to use for holding state data and
other "secret" information are not hidden at all. "View…Source…" on any HTML form will clearly
show all of these hidden fields and again they can be modified at will by a malicious user before the
data gets posted back to the Web server.

60

60

Protect CGI Source Code!

• Develop programs somewhere other
than CGI bin directory

• Be careful of automatic backup copies
created by editors, etc.

• Put any libraries used by CGI scripts in
separate directory outside of Web tree

When developing CGI programs, it's important to make sure that development is
done outside of the CGI bin directory where the program will run in production–
this is especially true if you're allowing CGI scripts in your doc trees with
ExecCGI. For one thing, you don't want interim copies of CGI programs sitting
around in directories where they might get executed. Also, the backup files left
around by editors may end up being treated not as CGI scripts that should be
executed, but rather as plain text files that should be displayed on a remote user's
browser– giving away your CGI source code and potentially dangerous information
like embedded passwords.
Also, there's no reason to put programming libraries used by CGI scripts (like
shopping cart toolkits and other productivity enhancers) in the CGI bin directory.
The programs can reference these libraries from anywhere in the file system, so put
them in a special directory that's neither a CGI bin directory nor part of the
document root. Again, these programming libraries can often contain embedded
passwords for accessing databases et al and you don't want their contents
mistakenly displayed to remote users.

61

61

Third-Party CGIs

• Lots of these out there, many are very
poorly written and have security holes

• Some contain deliberate back-doors

• Check source code– particularly for calls
to other programs and network connects

• Consider chroot() and/or testing on
isolated network at first

Speaking of CGI libraries, there are lots of programming libraries available for writing CGI
scripts– some freeware and some commercial. In some sense, using third-party CGI tools from
the 'net is even more dangerous than downloading and using third-party software packages like
Emacs and SSH, because not only are you trusting the developer and the archive site for your
own use, you're putting this code out there where anybody on the Internet can potentially execute
it on your Web servers. There was even a popular shopping cart application which had a
deliberate back door inserted by the author which allowed a remote user to run arbitrary
commands on the Web server (the author claimed that the back door had been inserted "to help
sites debug problems with their Web server configuration"– yeah, right).
If the library or application is distributed in source code form, it's important to carefully examine
the code before use. In particular look for the common routines used to execute other programs–
exec(), system(), popen() (and open(), `…`, and eval() in Perl and the shell). Also
look out for code which makes connections across the network to other machines– connect(),
bind(), listen(), accept(). For libraries and applications which are distributed in
binary form, the best you can do is try running strings on the program and see what you turn
up (you can also use nm on libraries and get a dump of the symbols defined in the library which
may be of some help).
You may want to actually test the CGI applications on an isolated or "air-gapped" network at
first. Put a sniffer on the network and watch for any suspicious network activity that may be
occurring. Of course, this won't catch passive back-doors like our shopping cart example above.

62

62

SSL Configuration

Earlier we mentioned that it may be useful to combine SSL encryption with HTTP
Basic Auth to protect passwords which are being used to access private Web sites.
More commonly, though, SSL is used to protect sensitive data that is flowing
between Web browser and Web server– credit card numbers, personal information,
etc. This section looks at how to set up SSL support in Apache and also talks about
how to get a server certificate for real Internet e-commerce.

Security Notice: As of Sept. 12, 2002 there is a worm running which is actively
exploiting a buffer overflow problem in the ModSSL/OpenSSL source. As of this
writing, the worm seems to be targeting Linux systems only, but it could mutate at
some point in the future. The particular buffer overflow exploit has actually been
known for months and is fixed in the latest releases of the various source
distributions– please upgrade.

63

63

SSL vs. Apache 1.3.x

• Unpack latest OpenSSL sources, plus
Apache and ModSSL sources in same dir

• ModSSL dist keyed to Apache version
• Configure and build OpenSSL
• Configure in ModSSL dir, build Apache:

cd mod_ssl-2.8.10-1.3.26

./configure --with-ssl=../openssl-0.9.6g \

--with-apache=../apache_1.3.26

cd ../apache_1.3.26

make

SSL support is not included in the Apache 1.3.x distribution by default. Not only do you need to
get the OpenSSL libraries (http://www.openssl.org), but you also need the ModSSL
hacks from http://www.modssl.org/. It's important to note that the ModSSL distribution
is keyed to the particular version of Apache that you're using– if you're up to Apache 1.3.26, then
you need to get the modssl-*-1.3.26.tar.gz file.
Unpack the OpenSSL, ModSSL, and Apache sources in the same directory so that the three
source trees end up in the same directory at the same level of the file system. Now configure and
build the OpenSSL distribution in the OpenSSL source directory (you don't actually have to
install it for the Apache build to succeed).
The odd thing about ModSSL with Apache 1.3.x is that you run the standard configure
command in the ModSSL directory, but then do the build in the Apache source directory (if
you've previously configured and built Apache in your source directory without SSL support,
make sure to do a "make distclean" in the Apache source directory before running
configure in the ModSSL directory). What's going on here is that the configure in the
ModSSL directory not only sets up the various Makefiles and include files for the Apache
build, it also hacks the necessary SSL modules into the Apache sources. The arguments to the
configure script in the ModSSL directory give the location of the OpenSSL distribution as
well as the location of the Apache sources which will be modified. You can also specify other
normal configure options like --prefix or --enable-digest and --enable-auth_db.
Hey, it's a huge hack, but it works…

64

64

SSL vs. Apache 2.x

• ModSSL built into distribution as of 2.x
• Must first build and install OpenSSL

• Compile in SSL support with appropriate
options to configure script:
cd httpd-2.0.40

./configure --prefix=/var/apache \

--enable-ssl --with-ssl=/usr/local/ssl

make

Life is better with Apache 2.x because ModSSL is actually included in the core
Apache source distribution. You still need to get the latest OpenSSL libraries and
install them someplace in the file system (this is different from the previous slide
where Apache 1.3.x wanted the OpenSSL binaries to be located in the OpenSSL
source directory).
Once OpenSSL is built and installed, just run configure as normal in the Apache
source directory, but add the --enable-ssl and --with-ssl=<dir> flags
(both are required although, frankly, --with-ssl should be enough).

65

65

Keys and Certificates

• SSL uses public/private key encryption

• Every SSL-ready server needs a key pair

• A certificate is a server's public key that
has been signed by a Certificate Authority

• For e-commerce activity, your cert must
be signed by a "recognized" CA

SSL is based on public/private key encryption (and thankfully RSA's patents on this
technology have expired so there are no more licensing hassles). Each server that
wants to support SSL communications needs a public/private key pair. Browsers
expect that the server's public key has been signed by a recognized certificate
authority (CA)– this signed public key is referred to as a server certificate.
For purely internal use, it's possible to set up your own CA or use dummy
certificates that have been signed by a fake CA. This process is more fully
documented on the Apache Web site:
http://httpd.apache.org/docs-2.0/ssl/ssl_faq.html#ToC29

Note also that the Apache 1.3.x distribution has an easy way to generate these
dummy certs. Just run "make certificate" in the Apache 1.3.x source
distribution and a helpful little shell script will walk you through the process.
When a Web browser accesses a site that has a dummy certificate, a little pop-up
appears warning the user that the certificate is invalid and asking if they want to
continue talking to the site. Most users click "yes" and accept the cert without
thinking about it.
The reality, though, is that for public e-commerce type activity you really need to
get a site certificate from one of the few CAs that are recognized by the popular
Web browsers currently in use. This process is described more fully on the next
slide…

66

66

Getting a Certificate

• Generate key (protect this file!):
openssl genrsa [-rand list:of:files] \

-out server.key 1024

• Generate Certificate Signing Request:
openssl req –new –key server.key –out server.csr

• Transmit CSR (+ money) to CA to
receive certificate (server.crt) file

The first step in getting a certificate is to generate a key pair for your Web server using the
openssl command from the OpenSSL distribution. "openssl genrsa" generates a standard
RSA type key which is used for standard Web browser SSL connections. The –out option specifies
the file where the key is placed and 1024 is the key length. On systems which do not have a built-in
/dev/random device, the openssl command needs some large amount of apparently random
bits to generate the key– the –rand option can be used to specify a colon-separated list of files
which can be used to generate pseudo random values. The usual tactic is to use log files, the system
kernel, etc. but not that this approach doesn't really produce truly random values (log files generally
use only alphanumeric characters, binaries contain lots of nulls, etc.).
The resulting server.key file contains the server's private key, so it's critical that you protect this
file. Anybody who steals that key file could impersonate your server and/or act as a man-in-the-
middle and compromise SSL sessions between your server and remote browsers. The openssl
command gives you the option of encrypting this file with a password, but if you do that then your
Web server will not be able to start automatically without this password being provided in some
fashion (you could code it into the Web server boot script, but this doesn't seem much better than not
encrypting the file at all). Since the Web server starts with root privileges (it needs to bind to port 80
after all), the server.key file should be mode 400 owned by root.
Once you've generated the server key, you need to use the openssl command again to generate the
certificate signing request (CSR) that you will be transmitting to the certificate authority (a list of
"recognized" CAs can be found at http://httpd.apache.org/docs-2.0/ssl/ssl_faq.html#ToC28). Along
with the CSR file, you'll also be sending along a quantity of cash money and some proof of the
legitimacy of your business. This magic certificate signing rain dance can actually take up to several
weeks depending on the CA you choose, so factor that into your timelines. Eventually you'll get
back a signed certificate (.crt) file which is what your Web server requires (along with the
server.key file). Note that your certificate needs to be renewed every year (more money).

67

67

Configuring SSL

Listen 443

…

<VirtualHost _default_:443>

ServerName www.sysiphus.com:443

DocumentRoot "/var/apache/docs-private"

…

SSLEngine on

SSLCertificateFile /var/apache/ssl/server.crt

SSLCertificateKeyFile /var/apache/ssl/server.key

SSLCipherSuite …

…

</VirtualHost>

Once you've got your server.key file and corresponding server.crt file, you need to enable
SSL support in httpd.conf and tell the Web server where these files are installed (again, keep
them out of the doc trees). The usual configuration (at least for sites with only one Web server) is to
have an httpd which is listening on port 80 for unencrypted requests and on port 443, which is the
standard port for SSL communications (after all, there's no point in shipping around image files via
SSL because the encryption adds extra overhead and burns extra CPU cycles on the Web server).
There's no problem with having multiple Listen directives in httpd.conf– the Web server will
bind to all of the requested addresses/ports.
In this configuration, SSL support is generally enabled with a VirtualHost definition
(VirtualHost is also used for supporting multiple different Web sites via a single Apache
instance). Here we're defining a virtual host which is listening on port 443 on the default list of
addresses that the server is also using for its port 80 bindings. The document root for this virtual
server is different set of documents than those used for unencrypted traffic (it is permissible to use
the same document root, but this seems fraught with peril). Note that the security configuration we
set up elsewhere (IP based access controls, password protection, etc.) still applies to the
VirtualHost directive, so you don't need to repeat all of that again inside of the VirtualHost
declaration, but you will need to allow access to the new docs-private directory since our stance
is still "default deny".
We do need to enable SSL (SSLEngine On) and tell the server where to find the server.key
and server.crt files. Again the server.key file should be only readable by root, but the
server.crt file needs to be world-readable. There are many, many other SSL options that need to be
included, but you can just cop these directly from the sample files provided with the Apache
distribution.

68

68

Starting Apache w/ SSL

• Server needs to be started with –DSSL:
/var/apache/bin/httpd –DSSL \

-f /var/apache/conf/httpd.conf

• "apachectl startssl" accomplishes
the same thing

• Don't forget to update your boot scripts!

Once you've got httpd.conf all set up, you must still start the Apache server
with the –DSSL command line argument as shown on the slide. You can also use
the apachectl program– "apachectl startssl"– which accomplishes the
same thing. Don't forget to update your boot scripts so the Web server will be
started correctly when the system reboots.
Again, it's sort of a pain that starting up SSL requires a special command line flag.
Why can't the settings in httpd.conf be enough?

69

69

Conclusion

• The material presented here is enough
to "get you going"

• Really only scratches the surface, though

• Lots of good docs at www.apache.org

• Keep up-to-date on new releases!

While this has been a quick introduction to the basic settings for Apache security,
there's a lot of additional information available on general Web server configuration
issues. Most of this documentation is linked off of www.apache.org, so take
some time to peruse this site. It's also important to check this site regularly to make
sure you're up-to-date on the latest Apache releases, because most new versions are
driven by security-related bug fixes.

70

70

Wrap Up

This space intentionally left blank.

71

71

That's It!

• Final Q&A?
• Please Fill Out Your Surveys!

This space intentionally left blank.

